Annual Progress Report (APR)

2022 Air Quality Annual Progress Report (APR) for West Lothian Council

In fulfilment of Part IV of the Environment Act 1995

Local Air Quality Management

June 2022

Information	West Lothian Council			
Local Authority Officer	Lynn Parsler/Sarah Gillespie			
Department	Environmental Health			
Address	West Lothian Civic Centre, Howden South Road, Livingston, West Lothian, EH54 6FF			
Telephone	01506 280000			
E-mail	environmentalhealth@westlothian.gov.uk			
Report Reference Number	M057453			
Date	June 2022			

Executive Summary: Air Quality in Our Area

Air Quality in West Lothian Council

West Lothian Council has continued to review and assess air quality throughout the district in 2021 to determine whether or not air quality objectives are likely to be achieved. Air pollutants Nitrogen Dioxide (NO₂) and fine particles (PM₁₀ & PM_{2.5}), which are mainly associated with vehicle emissions and domestic fuel burning, are measured using a network of three continuous air quality monitoring stations located in Linlithgow, Broxburn and Newton.

There are also 48 NO_x passive diffusion tubes located throughout West Lothian at 23 sites in total. There are two tubes co-located at 21 sites and three tubes co-located with the air quality monitoring stations at Broxburn and Linlithgow (Sites DT 4 and DT14) – we also employ 1 travel tube. Three new NO_x tube sites were added in April 2019. These were added in Winchburgh and East Calder due to new housing developments in these areas. All diffusion tube locations can be found on the Air Quality in Scotland website: <u>http://www.scottishairquality.scot/latest/diffusion-sites.</u>

A diffusion tube location map is provided at the end of this report in <u>Appendix C</u>. At the end of 2021, a review of the diffusion tube locations took place. The new diffusion tube locations will be in place for the start of 2022.

During 2021, there were a number of ongoing issues with regard to the equipment at all of our automatic monitoring stations. In particular, the equipment at Linlithgow and Newton encountered several problems during 2021 – this affected both the NOx and particulate matter analysers at both sites and severely reduced our data capture rates.

The 2021 monitoring data at all three continuous air quality monitoring stations has shown that the NO₂, PM₁₀ and PM _{2.5} long term average air quality objectives have been met. NO₂ levels increased at all three continuous monitoring sites from the levels found in 2020. However, as the country emerged from the Coronavirus lockdowns of 2020, traffic steadily increased and it is likely that this is the reason that levels have increased to be more in line with pre-pandemic levels. PM₁₀ levels also slightly increased at Linlithgow and Broxburn – Newton had the same long-term average as the previous year. PM_{2.5} levels remained fairly stable at all 3 sites and were very similar to the levels measured the previous year. There

were no exceedances of the short term NO_2 and PM_{10} air quality objectives at any of the three sites.

NOx passive diffusion tubes located throughout West Lothian have not shown any exceedances during 2021.

Further information on the location of the AQMA's can be found at <u>https://www.westlothian.gov.uk/article/34729/Air-Pollution</u>

Actions to Improve Air Quality

The actions taken to improve air quality within West Lothian during 2021 include;

- The Eco Stars fleet recognition scheme membership within West Lothian continued to increase during 2021. As of December 2021, 138 members (4047 vehicles) are now part of the scheme within the West Lothian Council area. West Lothian Councils own fleet of vehicles are also members of this Eco stars scheme;
- West Lothian Council added a further 20 electric pool vehicles to its fleet during 2021. By December 2021, there were 51 electric vehicles in the Council fleet in total;
- During 2021, a cross-service working group was set up. This group will look at how the Council decarbonises its fleet in line with Scottish Government targets. A report has been submitted to the Executive Management Team with the first major milestone for decarbonising part of the fleet (cars) being introduced from 2025 onwards. The group will look to put together a 'Decarbonising the Councils Fleet' Strategy;
- Coronavirus pandemic active travel measures remained in place during 2021, to make it safer for people who choose to walk, cycle or wheel for essential trips and exercise during Covid19. Nine packages of work were introduced, one of which was the introduction of localised footway widening at known narrow public footways. These footway widenings were installed at High Street in Linlithgow, Main Street in East Calder, Main Street in Mid Calder, Main Street in West Calder and Station Road in Kirknewton. These measures are constructed with temporary footway surfacing, temporary kerbing and removable reflective bollards.
- Continued use of electric vehicles within Environmental Health and Trading Standards along with greater use within the Council as a whole;
- Bikeability activities continued to return to normal during 2021. There was a greater level of activity possible once again from April to June 2021. Level 1 Bikeability was

delivered to 462 pupils across 14 schools and Level 2 (on road) delivered to 183 pupils across 7 schools. After the summer break in 2021, 3 Bikeability Scotland training courses were organised for West Lothian school staff to allow for further Bikeability sessions to take place across West Lothian. This has resulted in the training of 16 new Bikeability Scotland instructors from several different primary schools across the area. By the end of the academic year, a further 210 pupils across 10 schools had also completed their Level 1 Bikeability and 49 pupils from 4 schools had completed the Level 2 course. It is hoped that this training continues to promote cycling as a safe method of active travel to schools and beyond for West Lothians children.

- During 2021, there was further expansion of the publicly available EV charging points installed by West Lothian Council. There are now 14 dual outlet fast chargers, 9 50kW rapid chargers and 1 7kW dual outlet chargers installed throughout different public spaces within West Lothian;
- West Lothian Council also continues to provide the management and administration support for the East Central Scotland Vehicle Emissions Partnership (VEP), which is in collaboration with several other local authorities. The remit of the VEP is to help reduce vehicle emissions by encouraging drivers to switch off their engine whenever possible, encourage good travel modes and vehicle choices and handling idling and emissions complaints. In addition, the VEP uses a broad variety of advertising media to encourage change in driving habits across the councils' areas. Media used includes local TV, radio, public transport networks such as buses and social media.

Local Priorities and Challenges

In West Lothian, as explained in last year's report, the main priority is to complete the detailed assessments so as to determine whether the three Air Quality Management Areas (AQMAs) need to be revoked due to air pollution levels meeting the target air quality objectives for the previous three years. The detailed assessments will include land allocated for development and will detail whether there will be any potential future exceedances of pollutants at relevant receptors. Detailed traffic scenario modelling is still being carried out and there have been some delays internally within the Council in obtaining the correct data, to inform the detailed assessments. Once this is complete the detailed assessments can then be finalised and a decision can be made on the future of

the existing AQMAs. Unfortunately, this work was not progressed during 2021, due to delays in obtaining the data within the Council and other work priorities as a result of the Coronavirus pandemic. Resources were also taken up dealing with the various issues that arose with the continuous monitoring equipment.

Funding applications will continue to be made to the Scottish Government for monitoring equipment and action plan measures.

During 2022 we will be implementing our new diffusion tube locations and will also look to upgrade some of our continuous monitoring equipment, with a view to attaining a better data capture rate. We will also look to refresh our Local Site Operator training and ensure that relevant staff are well trained with regards to air quality work.

How to Get Involved

If you would like to find out more about air quality within West Lothian, please visit the Air Pollution pages of our website at https://www.westlothian.gov.uk/article/34729/Air-Pollution.

Linlithgow Continuous Monitor with 'Switch off and breathe' initiative signage installed adjacent to it

Linlithgow Partnership Centre – fleet of electric pool cars on charge

Table of Contents

Exe	ecutive	Summary: Air Quality in Our Areaiii	i								
	Air Qual	ity in West Lothian Councilii	ii								
	Actions	to Improve Air Quality iv	v								
	Local Pr	iorities and Challengesv	v								
	How to Get Involvedvi										
	Linlithgow Continuous Monitor with 'Switch off and breathe' initiative signage installed adjacent to it vii										
	Linlithgo	w Partnership Centre – fleet of electric pool cars on chargevii	ii								
1	Local A	Air Quality Management1	1								
2	Action	s to Improve Air Quality2	2								
	Air Qual	ity Management Areas2	2								
	Cleaner	Air for Scotland 2	3								
	2.1.1	Placemaking – Plans and Policies4	4								
	2.1.2	Transport – Low emission Zones5	5								
	Progres	s and Impacts of Measures to address Air Quality in West Lothian Council5	5								
3	Air Qua	ality Monitoring Data and Comparison with Air Quality Objectives10)								
3	Air Qua Summa	ality Monitoring Data and Comparison with Air Quality Objectives10)								
3	Air Qua Summa 3.1.1	ality Monitoring Data and Comparison with Air Quality Objectives	נ כ								
3	Air Qua Summa 3.1.1 3.1.2	ality Monitoring Data and Comparison with Air Quality Objectives) כ								
3	Air Qua Summar 3.1.1 3.1.2 3.1.3	ality Monitoring Data and Comparison with Air Quality Objectives 10 ry of Monitoring Undertaken 10 Automatic Monitoring Sites 10 Non-Automatic Monitoring Sites 10 Other Monitoring Activities 10) 0 0								
3	Air Qua Summat 3.1.1 3.1.2 3.1.3 Individua	ality Monitoring Data and Comparison with Air Quality Objectives 10 ry of Monitoring Undertaken 10 Automatic Monitoring Sites 10 Non-Automatic Monitoring Sites 10 Other Monitoring Activities 10 11 11) 0 0 0 1								
3	Air Qua Summar 3.1.1 3.1.2 3.1.3 Individua 3.1.4	ality Monitoring Data and Comparison with Air Quality Objectives 10 ry of Monitoring Undertaken 10 Automatic Monitoring Sites 10 Non-Automatic Monitoring Sites 10 Other Monitoring Activities 10 al Pollutants 11 Nitrogen Dioxide (NO2) 11))))))))								
3	Air Qua Summat 3.1.1 3.1.2 3.1.3 Individua 3.1.4 3.1.5	ality Monitoring Data and Comparison with Air Quality Objectives 10 ry of Monitoring Undertaken 10 Automatic Monitoring Sites 10 Non-Automatic Monitoring Sites 10 Other Monitoring Activities 10 al Pollutants 11 Nitrogen Dioxide (NO ₂) 11 Particulate Matter (PM ₁₀) 11) 5 5 7 1								
3	Air Qua Summat 3.1.1 3.1.2 3.1.3 Individua 3.1.4 3.1.5 3.1.6	ality Monitoring Data and Comparison with Air Quality Objectives 10 ry of Monitoring Undertaken 10 Automatic Monitoring Sites 10 Non-Automatic Monitoring Sites 10 Other Monitoring Activities 10 al Pollutants 11 Nitrogen Dioxide (NO ₂) 11 Particulate Matter (PM ₁₀) 11 Particulate Matter (PM _{2.5}) 12))))))))))))))								
3	Air Qua Summar 3.1.1 3.1.2 3.1.3 Individua 3.1.4 3.1.5 3.1.6 3.1.7	ality Monitoring Data and Comparison with Air Quality Objectives 10 ry of Monitoring Undertaken 10 Automatic Monitoring Sites 10 Non-Automatic Monitoring Sites 10 Other Monitoring Activities 10 al Pollutants 11 Nitrogen Dioxide (NO ₂) 11 Particulate Matter (PM ₁₀) 11 Particulate Matter (PM _{2.5}) 12 Sulphur Dioxide (SO ₂) 12	D D D D D D D D D D D D D D D D D D D								
3	Air Qua Summar 3.1.1 3.1.2 3.1.3 Individua 3.1.4 3.1.5 3.1.6 3.1.7 3.1.8	Ality Monitoring Data and Comparison with Air Quality Objectives 10 ry of Monitoring Undertaken 10 Automatic Monitoring Sites 10 Non-Automatic Monitoring Sites 10 Other Monitoring Activities 10 al Pollutants 11 Nitrogen Dioxide (NO2) 11 Particulate Matter (PM10) 11 Particulate Matter (PM2.5) 12 Sulphur Dioxide (SO2) 12 Carbon Monoxide, Lead and 1,3-Butadiene 12	b b c								
3	Air Qua Summat 3.1.1 3.1.2 3.1.3 Individua 3.1.4 3.1.5 3.1.6 3.1.7 3.1.8 New Lo	Ality Monitoring Data and Comparison with Air Quality Objectives 10 ry of Monitoring Undertaken 10 Automatic Monitoring Sites 10 Non-Automatic Monitoring Sites 10 Other Monitoring Activities 10 al Pollutants 11 Nitrogen Dioxide (NO2) 11 Particulate Matter (PM10) 11 Particulate Matter (PM25) 12 Sulphur Dioxide (SO2) 12 Carbon Monoxide, Lead and 1,3-Butadiene 12 Stal Developments 13	b b c								
3	Air Qua Summar 3.1.1 3.1.2 3.1.3 Individua 3.1.4 3.1.5 3.1.6 3.1.7 3.1.8 New Lo 4.1 Roa	Ality Monitoring Data and Comparison with Air Quality Objectives 10 ry of Monitoring Undertaken 10 Automatic Monitoring Sites 10 Non-Automatic Monitoring Sites 10 Other Monitoring Activities 10 al Pollutants 11 Nitrogen Dioxide (NO ₂) 11 Particulate Matter (PM ₁₀) 11 Particulate Matter (PM _{2.5}) 12 Sulphur Dioxide (SO ₂) 12 Carbon Monoxide, Lead and 1,3-Butadiene 12 Otal Developments 13 d Traffic Sources 13	 b b c c								

	4.3 Industrial Sources	13
	4.4 Commercial and Domestic Sources	13
	4.5 New Developments with Fugitive or Uncontrolled Sources	13
5	Planning Applications	14
6	Conclusions and Proposed Actions	18
	6.1 Conclusions from New Monitoring Data	18
	6.2 Conclusions relating to New Local Developments	18
	6.3 Proposed Actions	19
Ар	pendix A: Monitoring Results	21
Ар	pendix B: Full Monthly Diffusion Tube Results for 2021	33
Ар	pendix C: Supporting Technical Information / Air Quality Monitoring Data QA/QC) 20
	New or Changed Sources Identified Within West Lothian Council During 2021	38
	Additional Air Quality Works Undertaken by West Lothian Council During 2021	38
	QA/QC of Diffusion Tube Monitoring	38
	Diffusion Tube Annualisation	39
	Diffusion Tube Bias Adjustment Factors	39
	NO ₂ Fall-off with Distance from the Road	40
	QA/QC of Automatic Monitoring	43
	PM ₁₀ and PM _{2.5} Monitoring Adjustment	43
	Automatic Monitoring Annualisation	43
	NO ₂ Fall-off with Distance from the Road	46
Glo	ossary of Terms	55

List of Tables

TABLE 1.1 – SUMMARY OF AIR QUALITY OBJECTIVES IN SCOTLAND1TABLE 2.1 – DECLARED AIR QUALITY MANAGEMENT AREAS3TABLE 2.2 – PROGRESS ON MEASURES TO IMPROVE AIR QUALITY7
TABLE A.1 – DETAILS OF AUTOMATIC MONITORING SITES
TABLE A.2 – DETAILS OF NON-AUTOMATIC MONITORING SITES
TABLE A.3 – ANNUAL MEAN NO ₂ MONITORING RESULTS (μ G/M ³)
TABLE A.4 – 1-HOUR MEAN NO ₂ MONITORING RESULTS, NUMBER OF 1-HOUR MEANS > 200μ G/M ³ 29
TABLE A.5 – ANNUAL MEAN PM ₁₀ MONITORING RESULTS (µG/M ³)
TABLE A.6 – 24-HOUR MEAN PM10 MONITORING RESULTS, NUMBER OF PM10 24-HOUR MEANS >
50µG/M³
TABLE A.7 – ANNUAL MEAN PM _{2.5} MONITORING RESULTS (µG/M ³)
TABLE B.1 – NO ₂ 2021 MONTHLY DIFFUSION TUBE RESULTS (µG/M ³)

TABLE C.1 – BIAS	ADJUSTMENT FACTOR	.	 40
TABLE C.1 – BIAS	ADJUSTMENT FACTOR	8	

List of Figures

FIGURE 1 - SCREENSHOT FROM AEA SPREADSHEET - BIAS ADJUSTMENT FACTORS FOR
DIFFUSION TUBES - LINLITHGOW AQ STATION
FIGURE 2 - SCREENSHOT FROM AEA SPREADSHEET - BIAS ADJUSTMENT FACTORS FOR
DIFFUSION TUBES - BROXBURN AQ STATION
FIGURE 3 - SCREENSHOT OF DIFFUSION TUBE BIAS ADJUSTMENT FACTORS SPREADSHEET
(DEFRA)
FIGURE 4 - AUTOMATIC MONITORING ANNUALISATION SUMMARY (CONCENTRATIONS
PRESENTED IN μG/M3)
FIGURE 5 - POLLUTANT TREND GRAPHS OVER THE PAST 5 YEARS - PM_{10} TREND GRAPH – 2017 TO
2021
FIGURE 6 – POLLUTANT TREND GRAPHS OVER THE PAST 5 YEARS – PM _{2.5} TREND GRAPH – 2017
TO 2021
FIGURE 7 – POLLUTANT TREND GRAPHS OVER THE PAST 5 YEARS – NO $_2$ TREND GRAPH – 2017 TO
2021
FIGURE 8 – AIR QUALITY MANAGEMENT AREA MAPS – LINLITHGOW AIR QUALITY MANAGEMENT
AREA
FIGURE 9 – BROXBURN AIR QUALITY MANAGEMENT AREA
FIGURE 10 – NEWTON AIR QUALITY MANAGEMENT AREA
FIGURE 11 – DIFFUSION TUBE LOCATIONS MAP
FIGURE 12 – MAP OF CONTINUOUS MONITORING LOCATIONS IN WEST LOTHIAN

1 Local Air Quality Management

This report provides an overview of air quality in West Lothian Council during 2021. It fulfils the requirements of Local Air Quality Management (LAQM) as set out in Part IV of the Environment Act (1995) and the relevant Policy and Technical Guidance documents.

The LAQM process places an obligation on all local authorities to regularly review and assess air quality in their areas, and to determine whether or not the air quality objectives are likely to be achieved. Where an exceedance is considered likely the local authority must declare an Air Quality Management Area (AQMA) and prepare an Air Quality Action Plan (AQAP) setting out the measures it intends to put in place in pursuit of the objectives. This Annual Progress Report (APR) is summarises the work being undertaken by West Lothian Council to improve air quality and any progress that has been made.

Pollutant	Air Quality Objective Concentration	Air Quality Objective Measured as	Date to be Achieved by
Nitrogen dioxide (NO ₂)	200 µg/m ³ not to be exceeded more than 18 times a year	1-hour mean	31.12.2005
Nitrogen dioxide (NO ₂)	40 μg/m ³	Annual mean	31.12.2005
Particulate Matter (PM ₁₀)	50 μg/m ³ , not to be exceeded more than 7 times a year	24-hour mean	31.12.2010
Particulate Matter (PM ₁₀)	18 μg/m³	Annual mean	31.12.2010
Particulate Matter (PM _{2.5})	10 μg/m³	Annual mean	31.12.2021
Sulphur dioxide (SO ₂)	350 μg/m ³ , not to be exceeded more than 24 times a year	1-hour mean	31.12.2004
Sulphur dioxide (SO ₂)	125 μg/m ³ , not to be exceeded more than 3 times a year	24-hour mean	31.12.2004
Sulphur dioxide (SO ₂)	266 µg/m ³ , not to be exceeded more than 35 times a year	15-minute mean	31.12.2005
Benzene	3.25 μg/m³	Running annual mean	31.12.2010
1,3 Butadiene	2.25 μg/m³	Running annual mean	31.12.2003
Carbon Monoxide	10.0 mg/m ³	Running 8-Hour mean	31.12.2003

Table 1.1 – Summary of Air Quality Objectives in Scotland

2 Actions to Improve Air Quality

Air Quality Management Areas

Air Quality Management Areas (AQMAs) are declared when there is an exceedance or likely exceedance of an air quality objective. After declaration, the authority must prepare an Air Quality Action Plan (AQAP) within 12 months, setting out measures it intends to put in place in pursuit of the objectives. Whilst West Lothian Council has three declared AQMA's, only one has an agreed action plan. The other two have draft action plans. As detailed later in this report, successive years of monitoring data within the AQMA's has shown that air pollution objective limits are being met comfortably. The Councils focus has therefore turned to the revocation of these AQMA's, although progress has so far been slow in actioning this, for various reasons. It was hoped that work could progress on the revocations during 2021, however, there have been problems in obtaining data from other Council departments to inform the detailed assessments and due to a poor data capture rate during 2021, the planned work may be further delayed.

A summary of AQMAs declared by West Lothian Council can be found in Table 2.1. Further information related to declared or revoked AQMAs, including maps of AQMA boundaries are available online at <u>https://uk-air.defra.gov.uk/aqma/local-</u> <u>authorities?la_id=390</u> see the full list of Air Quality Management areas at <u>https://uk-air.defra.gov.uk/aqma/list</u>

We hope to revoke all of our AQMA's over the next few years, as pollutant levels have remained well below objectives in recent years. However, due to problems with data capture during 2021, we wish to focus on obtaining quality data before pursuing this further with any of the sites.

AQMA Name	Pollutants and Air Quality Objectives	City / Town	Description	Action Plan
AQMA Linlithgow	 NO2 annual mean PM10 annual mean 	Linlithgow	Includes Linlithgow, Linlithgow Bridge & land allocated for development	Draft Action Plan
AQMA Broxburn	 NO2 annual mean PM10 annual mean 	Broxburn	West Main Street eastwards to western boundary of service station, Broxburn	Action Plan
AQMA Newton	 PM₁₀ annual mean 	Newton	The whole of Newton village	Draft Action Plan

Table 2.1 – Declared Air Quality Management Areas

Cleaner Air for Scotland 2

<u>Cleaner Air for Scotland 2 – Towards a Better Place for Everyone (CAFS2)</u> is Scotland's second air quality strategy. CAFS2 sets out how the Scottish Government and its partner organisations propose to further reduce air pollution to protect human health and fulfil Scotland's legal responsibilities over the period 2021 – 2026. CAFS2 was published in July 2021 and replaces <u>Cleaner Air for Scotland – The Road to a Healthier Future (CAFS)</u>, which was published in 2015. CAFS2 aims to achieve the ambitious vision for Scotland "to have the best air quality in Europe". A series of actions across a range of policy areas are outlined, a summary of which is available on the Scottish Government's website.

Progress by West Lothian Council against relevant actions for which local authorities are the lead delivery bodies within this strategy is demonstrated below.

2.1.1 Placemaking – Plans and Policies

Local authorities with support from the Scottish Government will assess how effectively air quality is embedded in plans, policies, City Deals and other initiatives, and more generally in cross departmental working, identifying and addressing evidence, skills, awareness and operational gaps.

The council's current Active Travel Plan (ATP) for West Lothian, 2016-21 "Making Active Connections" is a plan to link people to places by active travel. It is not just about physical connections however - it is also a framework for mainstreaming active travel in West Lothian, and creating a culture where active travel becomes the norm for suitable everyday trips. To achieve this, it is crucial that West Lothian Council works successfully with external partners, schools and local communities, and "joins up" policies and projects delivered by different Services and teams across the Council. Embedding positive behaviours at an early age is essential, and schools throughout West Lothian encourage pupils to use active travel methods, emphasising the health, wellbeing and environmental benefits.

West Lothian Council also has a 'decarbonising the fleet' working group that is actively developing a strategy to reduce the impact of vehicle emissions from the Council fleet of vehicles.

There is a climate change group which also meets regularly to discuss and consolidate issues around the climate change emergency which includes matters linked to air quality.

There are further initiatives focussing on the Councils more remote housing stock (Westfield/Wilkieston), to replace oil fired and coal fired heating systems with more modern solutions such as heat pumps. This will help to improve the local air quality in these areas.

Other relevant policies and plans which also contain initiatives that affect air quality include;

- West Lothian Local Outcomes Improvement Plan 2013-2023
- Regional Transport Strategy, Local Transport Strategy, Green Transport Strategy 2008-2023, West Lothian Local Plan
- Supplementary Planning Guidance, including the one on Air Quality 2018
- West Lothian Climate Change Strategy 2021-2028

- Space Strategy, Active Travel Plan 2016-2021
- West Lothian Local Development Plan 2018

2.1.2 Transport – Low emission Zones

Local authorities working with Transport Scotland and SEPA will look at opportunities to promote zero-carbon city centres within the existing LEZs structure.

Low Emission Zones have not yet been considered appropriate for implementation within West Lothian Council.

Progress and Impacts of Measures to address Air Quality in West Lothian Council

West Lothian Council has taken forward a number of measures during the current reporting year of 2021 in pursuit of improving local air quality. Details of all measures completed, in progress or planned are set out in Table 2.2. More detail on these measures can be found in the air quality Action Plan relating to each AQMA and also the various plans and strategies noted in Section 2.1.1 of this report. Key completed measures are:

- Continued progress with the EcoStars fleet management scheme within West Lothian;
- Further update and use of electric vehicles within the Council's fleet management scheme;
- Further progress in the installation of electric vehicle charging points

Progress on the following measures has been slower than expected due to:

 Progress with the detailed assessments to work towards revocation of our Air Quality Management Areas. There has been a continued delay in obtaining traffic data in the correct format, to allow us to progress with the detailed assessments. This is due to work pressures within other departments of the Council. In addition, a lot of resources were employed within Environmental Health during 2021, to deal with several problems with our continuous monitoring equipment

West Lothian Council expects the following measures to be completed over the course of the next reporting year:

- Ensuring that our continuous monitoring equipment is fit for purpose and is repaired/replaced as required to allow for good data capture rates and allow quality data to be obtained. Once this is complete, the focus can move to the detailed assessments and revocation of the Air Quality Management Areas;
- Ensuring that sufficient staff have obtained Local Site Operator training;
- Establishing new diffusion tube monitoring sites using traffic data, local knowledge and any information from planning applications that is relevant.

Table 2.2 – Progress on Measures to Improve Air Quality

Measure No.	Measure	Category	Focus	Lead Authority	Planning Phase	Implementation Phase	Key Performance Indicator	Target Pollution Reduction in the AQMA	Progress to Date	Estimated Completion Date	Comments
1	Electric Vehicle Charging Point Installation	Promoting low emission transport	Building a network for low emission vehicles	Env. Health	June 2016 onwards	Ongoing	Installation of EV charging points	Reduction in air pollution through encouraging the use of EV's	Ongoing program of installing chargers on Council land	Ongoing	Fulfils action plan measure 15 of Broxburn AQAP
2	Improving links with local planning & development framework	Policy guidance and development control	Air Quality Planning Guidance	Env. Health	November 2016 onwards	2019	Air Quality Planning Guidance approved by council executive	Reduction in Air Pollution	Air Quality Planning guidance approved but non-statutory	Completed in 2019	Fulfils action plan measure 2 of Broxburn AQAP
3	Active Travel and Cycling Infrastructure	Promoting Travel Alternatives	Bikeability Officer in post	West Lothian Leisure/ West Lothian Council	2017/2018 onwards	From 2019 onwards	Post filled and training delivered to schools	Encouraging a reduction in car journeys	Training was increased again during 2021, after reduced activities due to the Coronavirus pandemic	Ongoing	Fulfils action plan measure 20 of draft Linlithgow AQAP

Measure No.	Measure	Category	Focus	Lead Authority	Planning Phase	Implementati on Phase	Key Performance Indicator	Target Pollution Reduction in the AQMA	Progress to Date	Estimated Completion Date	Comments
4	Ecostars fleet recognition scheme	Promoting low emission transport	Taken forward by vehicle emissions partnership	Vehicle emissions partnership	2018/ 2019	Ongoing	Businesses being visited by the scheme	Reduction in high emission journeys and vehicle	As of January 2022, West Lothian has 138 members with 4047 vehicles in scheme	Ongoing initiative	Fulfils action plan measure 8 of draft Newton AQAP
5	Electric Pool Cars for council staff in an AQMA	Promoting low emission transport	Replacing petrol and diesel pool cars with electric pool cars	Fleet and Transportatio n	2019/ 2020	2020/ 2021	Pool cars available for use in Linlithgow	Reduction in high emission journeys and air pollution	Four electric pool cars in use. Removal of petrol and diesel vehicles	Ongoing	Fulfils action plan measure 20 of Linlithgow AQAP
6	Adoption of Residential Development Guide – Supplementa ry Guidance	Policy guidance and development control	Planning Guidance affecting air quality	Development Planning/ Env. Health	2019	2019	Supplementa ry Planning Guidance approved by council executive	Guidance on EV installation, air quality and other areas linked to improving Air Quality within AQMA and the wider area	Guidance is in place and all new residential applications for development are required to meet these standards	Ongoing	Fulfils action plan measure 2 of Broxburn AQAP

Measure No.	Measure	Category	Focus	Lead Authority	Planning Phase	Implementati on Phase	Key Performance Indicator	Target Pollution Reduction in the AQMA	Progress to Date	Estimated Completion Date	Comments
7	Removal of solid fuel fires in Council housing in Newton	Promoting low emission plants	Initiative to replace polluting solid fuel fires within Council housing stock with Air Source Heat Pumps	Housing, Customer & Building Services	2008	Ongoing	Installation of Air Source heat Pumps in all 12 Council properties in Newton. 7 homes have been completed, 5 still to go	Reduction in particulate emitted as a result of solid fuel burning	The Council owns 12 homes in Newton, so far 7 have had air source heat pumps installed, with 5 still to be done	This is ongoing, some residents have refused the Air source heat pumps so they will not be installed until the tenant moves out. Other more rural housing areas within the Council are also being targeted with this initiative.	Draft Air Quality Action Plan Measure 5 – Reduce Emissions from non- transport sources

3 Air Quality Monitoring Data and Comparison with Air Quality Objectives

Summary of Monitoring Undertaken

3.1.1 Automatic Monitoring Sites

This section sets out what monitoring has taken place and how local concentrations of the main air pollutants compare with the objectives.

West Lothian Council undertook automatic (continuous) monitoring at 3 sites during 2021. Table A.1 in Appendix A shows the details of the sites. National monitoring results are available at <u>http://www.scottishairquality.scot</u>

Maps showing the location of the monitoring sites are provided in <u>Appendix C</u>. Further details on how the monitors are calibrated and how the data has been adjusted are included in <u>Appendix C</u>.

3.1.2 Non-Automatic Monitoring Sites

West Lothian Council undertook non- automatic (passive) monitoring of NO₂ at 23 sites during 2021. Table A.2 in <u>Appendix A</u> shows the details of the sites.

Maps showing the location of the monitoring sites are provided in <u>Appendix C</u>. Further details on Quality Assurance/Quality Control (QA/QC) and bias adjustment for the diffusion tubes are also included in <u>Appendix C</u>.

3.1.3 Other Monitoring Activities

There were no other monitoring activities during 2021.

LAQM Annual Progress Report 2022

Individual Pollutants

The air quality monitoring results presented in this section are, where relevant, adjusted for annualisation and bias. Further details on adjustments are provided in <u>Appendix C</u>.

3.1.4 Nitrogen Dioxide (NO₂)

Table A.3 in <u>Appendix A</u> compares the ratified and adjusted monitored NO₂ annual mean concentrations for the past five years with the air quality objective of 40 μ g/m³. The table shows that the annual mean objective was met at all three continuous monitoring sites, along with all of the diffusion tube locations. It is noted that data capture at the Linlithgow and Newton continuous monitoring sites was poor during 2021, so the levels found have been annualised. At all continuous monitoring sites, the level was up compared to 2020, but was still well within the objective level. It is likely that these levels rose as traffic increased with the easing of pandemic restrictions.

For diffusion tubes, the full 2021 dataset of monthly mean values is provided in <u>Appendix</u> <u>B</u>.

Table A.4 in <u>Appendix A</u> compares the ratified continuous monitored NO₂ hourly mean concentrations for the past five years with the air quality objective of 200µg/m³, not to be exceeded more than 18 times per year. There were no exceedences of this measure during 2021, althought the poor data capture at the Linlithgow and Newton sites is again noted. West Lothian has consistently met this objective at the 3 continuous monitoring stations, with only one exceedence at Linlithgow in 2019.

3.1.5 Particulate Matter (PM10)

Table A.5 in <u>Appendix A</u> compares the ratified and adjusted monitored PM_{10} annual mean concentrations for the past five years with the air quality objective of $18\mu g/m^3$. All three continuous monitoring sites have remained within the objective limit. It is acknowledged that there was poor data capture at Linlithgow and Newton continuous monitoring sites and that the data was therefore annualised. All levels increased from last year, but they did not get as high as the levels prior to the start of the pandemic.

Table A.6 in <u>Appendix A</u> compares the ratified continuous monitored PM_{10} daily mean concentrations for the past five years with the air quality objective of $50\mu g/m^3$, not to be

exceeded more than seven times per year. There were no exceedances of this limit during 2021.

3.1.6 Particulate Matter (PM_{2.5})

Table A.7 in <u>Appendix A</u> compares the ratified and adjusted monitored PM_{2.5} annual mean concentrations since 2017, when West Lothian started monitoring PM_{2.5} at two of our continuous monitoring sites. At Newton, PM_{2.5} monitoring only started in 2019. The relevant air quality objective is 10µg/m³. At Linlithgow during 2021, the level increased and at the other 2 sites, monitored levels remained the same as the previous year. It is likely that these levels increased as traffic movements also increased in line with pandemic restrictions easing. The data capture rates should also be noted for each site.

3.1.7 Sulphur Dioxide (SO₂)

During 2021, no monitoring of SO₂ was carried out within West Lothian.

3.1.8 Carbon Monoxide, Lead and 1,3-Butadiene

There was no monitoring of Carbon monoxide, Lead or 1,3-Butadiene during 2021 within West Lothian during 2021

4 New Local Developments

4.1 Road Traffic Sources

There were no new road traffic sources in 2021.

4.2 Other Transport Sources

There were no new other transport sources in 2021.

4.3 Industrial Sources

There were no new industrial sources during 2021.

4.4 Commercial and Domestic Sources

Installation of domestic wood burning stoves continues to grow within West Lothian. There have been several planning applications received within and out-with the AQMA's during 2021. These applications are generally given consent subject to flue height and applicants are given advice in line with DEFRA requirements for approved stoves and smokeless fuel etc. During 2021, the Environmental Health team started to keep a spreadsheet of wood burning stove applications. It is hoped that this will help to identify any potential hot spot areas, with larger numbers of stoves being installed. There were no applications for any larger scale commercial or domestic developments during 2021.

4.5 New Developments with Fugitive or Uncontrolled Sources

There were no new fugitive or uncontrolled sources during 2021.

5 Planning Applications

West Lothian Council has received the following applications in 2021 which might affect air quality;

 O210/P/21 and 0206/P/21 - Drumshoreland Garden Community, Land North of Old Clapperton Hall, East Calder, West Lothian

Planning permission in principle for a 58ha mixed use development including residential development (dwellings and flatted), local centre (including Class 1, Class 2 and Class 3 uses), community facilities, public open space, and associated works and infrastructure (EIA development)

The air quality impact assessment for the smaller development can be found here https://planning.westlothian.gov.uk/publicaccess/files/41620C7EEB0847B305A0EC F473EAF72A/pdf/0210 P_21-VOL 5_EIAR_APPENDIX_13_1_AIR_QUALITY_IMPACT_ASSESSMENT-3004398.pdf

As part of the air quality impact assessment, detailed dispersion modelling using the ADMS-Roads modelling software was undertaken to predict the concentrations of NO2, PM10 and PM2.5 due to emissions from road traffic in conjunction with existing

background concentrations, at existing sensitive human and ecological receptor locations within the study area.

No exceedances of the AQSs for NO2, PM10 and PM2.5 (human receptors) are predicted at any of the sensitive receptors within the study area. The predicted change in NO2, PM10 and PM2.5 (human receptors) annual mean concentrations between the future without Proposed Development and future with Proposed Development scenarios shows that the Proposed Development is predicted to have a **Negligible impact** at all human receptors within the study area. The predicted short-term mean concentrations for NO2 and PM10 (human receptors) which are relevant for the short-term exposure of members of public, comply with the relevant AQSs for NO2 and PM10 at all human receptors.

LAQM Annual Progress Report 2022

In summary, the significance of effect associated with operational phase emissions upon local air quality of the Proposed Development is assessed as **not significant**.

An air quality impact assessment for the wider site was also carried out and it can be viewed here;

https://planning.westlothian.gov.uk/publicaccess/files/9D5C6DEFD2259B05563AD7 27BF7D128A/pdf/0206_P_21-

VOL 5 EIAR 13 1 AIR QUALITY IMPACT ASSESSMENT WIDER SITE V1-3005136.pdf

As part of the air quality impact assessment, detailed dispersion modelling using the ADMS-Roads modelling software was undertaken to predict the concentrations of NO2, PM10 and PM2.5 due to emissions from road traffic in conjunction with existing

background concentrations, at existing sensitive human and ecological receptor locations within the study area.

No exceedances of the AQSs for NO2, PM10 and PM2.5 (human receptors) are predicted at any of the sensitive receptors within the study area. The predicted change in NO2, PM10 and PM2.5 (human receptors) annual mean concentrations between the future without Proposed Development and future with Proposed Development scenarios shows that the Proposed Development is predicted to have a Negligible impact at most human receptors within the study area.

A **Slight Adverse impact** associated with the change in annual mean NO2 is predicted at receptor R28 (ground floor residential property on Drumshoreland Road).

A **Slight Adverse impact** associated with the change in annual mean PM10 is predicted at receptors R27 & R28 (ground floor residential properties on Drumshoreland Road).

The predicted short-term mean concentrations for NO2 and PM10 (human receptors) which are relevant for the short-term exposure of members of public, comply with the relevant AQSs for NO2 and PM10 at all human receptors.

In summary, the significance of effect associated with operational phase emissions upon local air quality of the Proposed Development is assessed as **not significant**.

• 0801/FUL/20 - Land South of Deanburn Road Linlithgow West Lothian

Erection of 60 houses with associated works, including access, landscaping and SUDS provision.

An air quality impact assessment was carried out as part of this application and it can be viewed here;

https://planning.westlothian.gov.uk/publicaccess/files/E3BFF064B5738BC4B0F136 ED7E3AD1E6/pdf/0801_FUL_20-AIR_QUALITY_IMPACT_ASSESSMENT__5-3-21_-3031656.pdf

The air quality impact assessment found that the predicted change in NO2 as a consequence of the proposed development is of **negligible significance** at all sensitive receptors considered in the study area in terms of the IAQM/EPUK assessment framework. The predicted contribution from the proposed development to the annual mean PM10 is of **negligible significance** at all sensitive receptors considered within the study area in terms of the IAQM/EPUK assessment framework. The predicted contribution from the proposed development to the annual mean PM10 is of **negligible significance** at all sensitive receptors considered within the study area in terms of the IAQM/EPUK assessment framework. The predicted contribution from the proposed development to the annual mean PM2.5 is of **negligible significance** at all sensitive receptors considered within the study area in terms of the IAQM/EPUK assessment framework.

Air quality is **predicted to comply** with the statutory Limit Value for NO2 and the Scottish Government's annual mean Objectives for particles at all sensitive receptors considered in the study area.

• 0328/P/21 - Clarendon Farm Manse Road Linlithgow West Lothian EH49 6QR

Planning permission in principle for a 6.92ha residential development, including access roads, open space, landscaping and associated works

An air quality impact assessment was carried out for this development. It can be found here;

https://planning.westlothian.gov.uk/publicaccess/files/E5C1566D35DB3CF9D65FA 73CAB31207C/pdf/0328_P_21-AIR_QUALITY-3101618.pdf

The air quality impact assessment found that the model predicts **no significant change** in NO2, PM10 or PM2.5 concentrations at all Sensitive Receptors on comparison of the 'with' and 'without' development scenarios O582/P/21 - Land South of B7066 And West of A706 Heartlands Whitburn West
Lothian

Planning permission in principle for a 78.4ha mixed-use development including residential, commercial land, community / education facilities, local services, open space, road infrastructure, engineering works and associated landscape proposals (EIA).

The air quality impact assessment for the development can be found at the following link;

https://planning.westlothian.gov.uk/publicaccess/files/DC221BB6319C6C0285A642 8C320E56E9/pdf/0582_P_21-CH_10_-_AIR_QUALITY-3046571.pdf

The assessment concluded that in relation to NO2 the impact of the proposed development is considered to be **Negligible** for all of the assessed sensitive receptors and therefore the resultant effects are **not significant**. The assessment concludes that in relation to PM10 the impact of the proposed development is considered to be **Negligible** for all of the assessed sensitive receptors and therefore the resultant effects are **not significant**. In relation to PM2.5 the impact of the proposed development is considered to be **Negligible** for all of be **Negligible** for all of the assessed sensitive receptors and therefore the resultant effects are **not significant**. In relation to PM2.5 the impact of the proposed development is considered to be **Negligible** for all of the assessed sensitive receptors and therefore the resultant effects are considered to be **Not Significant**.

• 1036/P/21 - Land East of New Calder Mill Road Mid Calder West Lothian

Planning permission in principle for a 6.91 Ha residential development with associated infrastructure, landscaping, open space and engineering work. <u>Planning permission was refused for this application, but it may come back in another year so worth noting</u>

6 Conclusions and Proposed Actions

6.1 Conclusions from New Monitoring Data

All long-term air quality objective levels were met in 2021 at all monitoring sites. There were also no short-term exceedances of any objective. It is noted that measured levels were higher than in 2020 and this is likely to be due to increased vehicle movements as the country moved out of the pandemic. There are now several years of data showing results below the air quality monitoring objectives. As in previous years, work had been planned to carry out detailed assessments to establish whether all three AQMA's could be revoked. It has been difficult to obtain the all of the required information from other departments to allow Environmental Health to progress with detailed assessments and resources were also taken up dealing with the numerous issues with our continuous monitoring equipment failures. A poor data capture rate in 2021 has meant that we are focussing our resources on ensuring that the monitoring equipment is repaired/replaced as required so that we have robust, reliable data going forward and then we can concentrate on the revocation of our Air Quality Management areas. Diffusion tube results again showed that all levels were below the objectives and this reinforced our decision to review the diffusion tube locations and plan some different monitoring locations for 2022.

6.2 Conclusions relating to New Local Developments

There have been no new local developments that have the potential to introduce new exceedances of relevant air quality objectives in West Lothian. The Local Development Plan for West Lothian identifies various residential sites in and around the AQMAs. It's likely that these will introduce further traffic related emissions and may be subject to Air Quality Impact Assessments (AQIAs), as and when they arise. These will be considered in line with our adopted Air Quality Supplementary Planning Guidance.

LAQM Annual Progress Report 2022

6.3 Proposed Actions

Monitoring data for 2021 has not highlighted any need for additional monitoring to take place. There are no new exceedances of the objectives for any pollutant measured. Whilst measured levels increased during 2021, for reasons previously explained, it can be shown that levels of pollutants in West Lothian have continued to be comfortably below air quality objective limits for several years.

As per last year's report, the draft Linlithgow and Newton Air Quality Action Plans and the Broxburn Air Quality Action Plan may be superseded by Detailed Assessments. Any such assessments will consider land allocated for development in the local development plan and will set out whether any future exceedances of pollutants at relevant receptors are likely. West Lothian Council will aim to work towards assessing whether the current AQMA's should be revoked with the use of detailed assessments and further modelling as required. This work will proceed as soon as information is available and resources allow.

The main priorities for 2022 are;

- To establish new diffusion tube locations (potential hot spots), install the diffusion tubes and remove older tubes that have consistently shown readings below objective levels. Traffic data, local knowledge and information on new developments will be utilised to establish any new sites;
- Focus resources on ensuring the continuous monitoring equipment is repaired and/or replaced where necessary and work towards a good data capture rate, with reliable, quality data;
- Once we have reliable, quality data we can then progress towards the detailed assessments and revocation of the air quality management areas – subject to obtaining the necessary traffic data from within the Council;
- Ensure sufficient staff within Environmental Health are well trained and competent in local site operator duties;
- West Lothian Council will continue to apply to the Scottish Government for funding to assist with monitoring equipment and action plan measures;

Appendix A: Monitoring Results

Table A.1 – Details of Automatic Monitoring Sites

Site ID	Site Name	Site Type	X OS Grid Ref	Y OS Grid Ref	Pollutants Monitored	In AQMA? Which AQMA?	Monitoring Technique	Distance to Relevant Exposure (m) (1)	Distance to kerb of nearest road (m) ⁽²⁾	Inlet Height (m)
CM1	Linlithgow High St	Roadside	300426	677172	NO ₂ ; PM ₁₀ ; PM _{2.5,}	Y Linlithgow	FIDAS; NO _x Analyser	4	1.36	2.32
CM2	Broxburn CNC	Roadside	308314	672231	NO ₂ ; PM ₁₀ ; PM _{2.5}	Y Broxburn	FIDAS; NO _x Analyser	3.5	2.20	2.36
СМЗ	Newton CNC	Roadside	309258	677728	NO ₂ ; PM ₁₀ : PM _{2.5}	Y Newton	FDMS; NO _x Analyser	1.8	1.92	2.41

Notes:

(1) Om if the monitoring site is at a location of exposure (e.g. installed on the façade of a residential property).

(2) N/A if not applicable.

Table A.2 – Details of Non-Automatic Monitoring Sites

Site ID	Site Name	Site Type	X OS Grid Ref	Y OS Grid Ref	Pollutants Monitored	In AQMA? Which AQMA?	Distance to Relevant Exposure (m) (1)	Distance to kerb of nearest road (m) ⁽²⁾	Tube co- located with a Continuous Analyser?	Tube Height (m)
DT1	Newton	Roadside	309223	677711	NO ₂	Y; Newton	3	1.6	Ν	2.4
DT2	Broxburn WMS	Roadside	308165	672222	NO ₂	Y Broxburn	Façade	3.3	Ν	2.5
DT3	Broxburn EMS	Roadside	308426	672233	NO ₂	Y Broxburn	Façade	4	Ν	1.8
DT4	Broxburn CNC	Roadside	308314	672231	NO ₂	Y Broxburn	3.2	1.7	Y	2.5
DT5	Broxburn E Mains	Roadside	309368	672213	NO ₂	Y Broxburn	5	1.5	Ν	2.7
DT6	Dedridge Cedric Rise	Urban Background	306403	666341	NO ₂	N	2.5	1.6	Ν	2.4

Site ID	Site Name	Site Type	X OS Grid Ref	Y OS Grid Ref	Pollutants Monitored	In AQMA? Which AQMA?	Distance to Relevant Exposure (m) (1)	Distance to kerb of nearest road (m) ⁽²⁾	Tube co- located with a Continuous Analyser?	Tube Height (m)
DT7	West Calder	Roadside	301758	663158	NO ₂	N	2	2	Ν	2.5
DT8	Whitburn	Roadside	294687	665030	NO ₂	N	2	0.5	Ν	2.2
DT9	Armadale Cross	Roadside	293842	668588	NO ₂	N	3	1.4	Ν	2.3
DT10	Bathgate, South Bridge Street	Roadside	297401	668772	NO ₂	N	1	1.5	Ν	2.1
DT11	Bathgate Steelyard	Roadside	297467	668734	NO ₂	N	Façade	2	Ν	2.5
DT12	Bathgate King St	Roadside	297570	668586	NO ₂	N	5	4	Ν	2.5
DT13	Bathgate High St	Urban Background	297656	669298	NO ₂	N	3	10	Ν	1.5

Site ID	Site Name	Site Type	X OS Grid Ref	Y OS Grid Ref	Pollutants Monitored	In AQMA? Which AQMA?	Distance to Relevant Exposure (m) (1)	Distance to kerb of nearest road (m) ⁽²⁾	Tube co- located with a Continuous Analyser?	Tube Height (m)
DT14	Linlithgow CNC	Roadside	300412	677124	NO ₂	Y Linlithgow	4	1.36	Y	2.5
DT15	Linlithgow H ST NW	Roadside	299930	677070	NO ₂	Y Linlithgow	2	1.4	Ν	2.4
DT16	Linlithgow H ST SW	Roadside	299911	677052	NO ₂	Y Linlithgow	2	2.9	Ν	2.3
DT17	Linlithgow H ST NE	Roadside	300479	677148	NO ₂	Y Linlithgow	3.4	2	Ν	1.5
DT18	Linlithgow H ST SE	Roadside	300485	677125	NO ₂	Y Linlithgow	7.5	1.5	Ζ	2.6
DT19	Linlithgow H ST N	Roadside	300398	677132	NO ₂	Y Linlithgow	Façade	2.4	Я	2.0
DT20	Linlithgow H ST S	Roadside	300405	677118	NO ₂	Y Linlithgow	Façade	3	Ν	2.7

Site ID	Site Name	Site Type	X OS Grid Ref	Y OS Grid Ref	Pollutants Monitored	In AQMA? Which AQMA?	Distance to Relevant Exposure (m) (1)	Distance to kerb of nearest road (m) ⁽²⁾	Tube co- located with a Continuous Analyser?	Tube Height (m)
DT21	Main Street, East Calder	Roadside	308641	667912	NO ₂	Ν	2.0	1.8	Ν	2.7
DT22	Butchers, Winchburgh	Roadside	308957	675025	NO ₂	Ν	Façade	1.8	Ν	2.5
DT23	Main Street, Winchburgh	Roadside	309133	675028	NO ₂	Ν	Façade	1.5	Ν	2.7

Notes:

(1) Om if the monitoring site is at a location of exposure (e.g. installed on/adjacent to the façade of a residential property).

(2) N/A if not applicable.

Table A.3 – Annual Mean NO ₂ Monitoring Results	; (µg/m³)
--	-----------

Site ID	Site Type	Monitoring Type	Valid Data Capture for Monitoring Period (%) ⁽¹⁾	Valid Data Capture 2021 (%) ⁽²⁾	2017	2018	2019	2020	2021
CM1	Roadside	Automatic		22	31	28	30	16.4	19.6
CM2	Roadside	Automatic		90	30	27	27	19	22
СМЗ	Roadside	Automatic		28	19	17	18	12.6 ₍₃₎	15.7
DT1	Roadside	Diffusion Tube	-	100	23.3	21.1	20.7	8.7	14.9
DT2	Roadside	Diffusion Tube	-	83	26.2	26.5	23.2	12.3	19.2
DT3	Roadside	Diffusion Tube	-	100	25.5	22.2	22.2	11.6	19.9
DT4	Roadside	Diffusion Tube	-	100	28.4	28.0	27.2	15.5	25.6
DT5	Roadside	Diffusion Tube	-	100	26.7	22.5	22.6	13.5	21.8
DT6	Urban	Diffusion Tube	-	75	12.1	12.1	11.6	6.9	9.7
DT7	Roadside	Diffusion Tube	-	91	22.1	20.7	20.8	11.4	17.1
DT8	Roadside	Diffusion Tube	-	100	23.9	20.5	23.8	14.9	21.7
DT9	Roadside	Diffusion Tube	-	100	25.2	23.1	24.2	12.6	20.4
DT10	Roadside	Diffusion Tube	-	83	18.9	16.4	16.8	8.6	14.7

Site ID	Site Type	Monitoring Type	Valid Data Capture for Monitoring Period (%) ⁽¹⁾	Valid Data Capture 2021 (%) ⁽²⁾	2017	2018	2019	2020	2021
DT11	Roadside	Diffusion Tube	-	83	28.0	24.5	26.6	9.1	21.5
DT12	Roadside	Diffusion Tube	-	83	27.2	26.6	26.3	15.3	21.1
DT13	Urban	Diffusion Tube	-	100	10.7	9.9	9.5	6.1	8.2
DT14	Roadside	Diffusion Tube	-	100	31.6	26.9	25.3	13.9	19.3
DT15	Roadside	Diffusion Tube	-	100	28.1	24.7	24.6	11.8	18.4
DT16	Roadside	Diffusion Tube	-	100	33.9	29.2	29.4	13.8	21.3
DT17	Roadside	Diffusion Tube	-	100	25.7	21.8	26.7	9.9	14
DT18	Roadside	Diffusion Tube	-	100	30.6	25.4	22	11.5	16.7
DT19	Roadside	Diffusion Tube	-	100	26.5	22.7	22.4	8.9	16.5
DT20	Roadside	Diffusion Tube	-	83	30.8	26.6	25.1	13.9	17.9
DT21	Roadside	Diffusion Tube	-	91	N/A	N/A	12.9	6.3	11.9
DT22	Roadside	Diffusion Tube	-	91	N/A	N/A	16.2	9.0	13.8
DT23	Roadside	Diffusion Tube	-	91	N/A	N/A	13.0	7.7	13.5

Notes:

Exceedances of the NO₂ annual mean objective of $40\mu g/m^3$ are shown in bold.

NO₂ annual means exceeding 60µg/m³, indicating a potential exceedance of the NO₂ 1-hour mean objective are shown in **bold and**

underlined.

Means for diffusion tubes have been corrected for bias. All means have been "annualised" as per LAQM.TG(16) if valid data capture for the full calendar year is less than 75%. See Appendix C for details.

- (1) Data capture for the monitoring period, in cases where monitoring was only carried out for part of the year.
- (2) Data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%).

Site ID	Site Type	Monitoring Type	Valid Data Capture for Monitoring Period (%) ⁽¹⁾	Valid Data Capture 2021 (%) ⁽²⁾	2017	2018	2019	2020	2021
CM1	Roadside	Automatic	N/A	22%	0	0	1	0	0
CM2	Roadside	Automatic	N/A	90%	0	0	0	0	0
СМЗ	Roadside	Automatic	N/A	28%	0	0	0	0	0

Table A.4 – 1-Hour Mean NO₂ Monitoring Results, Number of 1-Hour Means > 200µg/m³

Notes:

Exceedances of the NO₂ 1-hour mean objective (200 µg/m³ not to be exceeded more than 18 times/year) are shown in bold.

If the period of valid data is less than 85%, the 99.8th percentile of 1-hour means is provided in brackets.

(1) Data capture for the monitoring period, in cases where monitoring was only carried out for part of the year.

Table A.5 – Annual Mean PM₁₀ Monitoring Results (µg/m³)

Site ID	Site Type	Valid Data Capture for Monitoring Period (%) ⁽¹⁾	Valid Data Capture 2021 (%) ⁽²⁾	2017	2018	2019	2020	2021
CM1	Roadside	N/A	42%	9	11	12	8(7.7)	8.5
CM2	Roadside	N/A	97%	14	13	14	11	12
СМЗ	Roadside	N/A	54%	15 (17) (3)	14	14	11(11.3)	11.3

Notes:

Exceedances of the PM₁₀ annual mean objective of 18 μ g/m³ are shown in bold.

All means have been "annualised" as per LAQM.TG(16), valid data capture for the full calendar year is less than 75%. See Appendix C for details.

(1) Data capture for the monitoring period, in cases where monitoring was only carried out for part of the year.

Site ID	Site Type	Valid Data Capture for Monitoring Period (%) ⁽¹⁾	Valid Data Capture 2021 (%) ⁽²⁾	2017	2018	2019	2020	2021
CM1	Roadside	N/A	42%	0	0	5	0	0
CM2	Roadside	N/A	97%	0	0	4	0	0
СМЗ	Roadside	N/A	54%	0	1	2	0	0

Table A.6 – 24-Hour Mean PM₁₀ Monitoring Results, Number of PM₁₀ 24-Hour Means > 50µg/m³

Notes:

Exceedances of the PM₁₀ 24-hour mean objective (50 µg/m³ not to be exceeded more than seven times/year) are shown in bold.

If the period of valid data is less than 85%, the 98.1st percentile of 24-hour means is provided in brackets.

(1) Data capture for the monitoring period, in cases where monitoring was only carried out for part of the year.

Table A.7 – Annual Mean PM_{2.5} Monitoring Results (µg/m³)

Site ID	Site Type	Valid Data Capture for Monitoring Period (%) ⁽¹⁾	Valid Data Capture 2021 (%) ⁽²⁾	2017	2018	2019	2020	2021
CM1	Roadside	N/A	42	5	6	7	5	5.4
CM2	Roadside	N/A	97	6	7	8	6	6
СМЗ	Roadside	N/A	54	n/a	n/a	10(9.4)	8	7.3

Notes:

Exceedances of the PM_{2.5} annual mean objective of 10 μ g/m³ are shown in bold.

All means have been "annualised" as per LAQM.TG(16), valid data capture for the full calendar year is less than 75%. See Appendix C for details.

(1) Data capture for the monitoring period, in cases where monitoring was only carried out for part of the year.

Appendix B: Full Monthly Diffusion Tube Results for 2021

Site ID	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual Mean: Raw Data	Annual Mean: Bias Adjusted <u>For reference</u> <u>only</u> ⁽¹⁾ 0.73	National Bias Adjusted 0.78	Data Capture %
DT1	26.8	16.4	16.6	23.2	18.3	14.3	14.8	20.6	19.2	17.4	19.9	22.5	19.2	14	14.9	100
DT2	42.5	27.6	20.0	26.2	28.4	19.8	24.3	26.4	No data	23.7	25.7	30.1	26.7	19.5	20.8	83
DT3	39.5	19.8	22	25.9	24.7	18.6	22.1	23.4	28.5	21.1	30.3	31.2	25.6	18.7	19.9	100
DT4	44.6	30.5	25.6	33.8	35.2	26.1	29.6	31.7	30.8	30.9	25.1	38.1	32.8	23.9	25.6	100
DT5	44.2	26	20.2	31	29.4	20.4	27.0	27.7	28.3	22.5	23.4	30.8	27.9	20.4	21.8	100
DT6	24.1	11.5	10.9	No Data	No Data	8.3	9.6	12.1	11.3	11.3	13.6	No Data	12.4	9.1	9.7	75
DT7	27.7	21.0	Missing	20.3	24.9	17.6	19.6	23.6	21.3	18.9	22.1	24.9	21.9	16	17.1	91

Table B.1 – NO₂ 2021 Monthly Diffusion Tube Results (µg/m³)

LAQM Annual Progress Report 2022

Site ID	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Νον	Dec	Annual Mean: Raw Data	Annual Mean: Bias Adjusted <u>For reference</u> <u>only</u> ⁽¹⁾ 0.73	National Bias Adjusted 0.78	Data Capture %
DT8	42.7	24.9	25.1	30.2	28.8	23.5	23.8	26.4	28.3	22.3	30.3	25.7	27.8	20.3	21.7	100
DT9	35.4	23.1	27.1	20.3	21	20.9	20.9	20.7	23.9	33.4	34.8	31.3	26.1	19.1	20.4	100
DT10	30.0	No Data	No Data	17.9	16.7	11.9	15.1	16.3	18.7	15.6	21.2	24.4	18.8	13.7	14.7	83
DT11	38.5	21.2	23.3	27	27.9	20.8	No Data	20.3	25.9	29.8	37.8	35.8	27.5	20.1	21.5	83
DT12	51.9	24.6	25.8	29.7	28.8	21.6	24.3	15.9	31.7	32.3	No Data	No Data	27	19.7	21.1	83
DT13	18.3	11.6	9.0	9.9	9.3	6.1	7.6	7.9	8.8	9.3	12.9	14.7	10.5	7.7	8.2	100
DT14	36.9	24.9	21.5	22.6	22.1	19.0	19.1	21.3	24.5	25.4	28.3	30.6	24.7	18	19.3	100
DT15	34.7	19.9	20.0	28	25.1	18.9	20.9	25.5	15.7	20.4	25.3	28.9	23.6	17.2	18.4	100
DT16	42.8	22.9	26.5	21.7	27.2	23.2	24.3	22.6	23.3	27.1	25.8	33.6	27.3	19.9	21.3	100
DT17	30.2	15.1	18.3	15.9	17.8	12.6	14.8	14.8	11.7	19.5	25.0	23.6	18	13.1	14	100

LAQM Annual Progress Report 2022

Site ID	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual Mean: Raw Data	Annual Mean: Bias Adjusted For reference only ⁽¹⁾ 0.73	National Bias Adjusted 0.78	Data Capture %
DT18	34.0	20.0	18.7	20.1	21.1	17.8	15.7	19.8	15.9	20.3	24.4	28.2	21.4	15.6	16.7	100
DT19	33.4	18.4	18.3	23.9	20.1	16.2	19.5	19.5	16.4	19.7	26.0	23.4	21.1	15.4	16.5	100
DT20	36.4	25.9	22.1	20.0	21.6	19.3	19.9	20.9	24.2	No Data	17.0	No Data	23	16.8	17.9	83
DT21	27.3	14.2	11.9	No Data	13.8	11.5	12.9	12.9	15.9	12.6	17.4	18.1	15.3	11.1	11.9	91
DT22	29.9	17.6	14.7	No Data	16.2	12.5	15.5	16.6	17.3	17.9	16.5	19.4	17.7	12.9	13.8	91
DT23	32.2	16.0	13.7	No Data	16.5	12.7	12.7	13.7	16.8	13.6	18.7	21.5	17.3	12.6	13.5	91

Notes:

(1) See Appendix C for details on bias adjustment

 Table B.2 - Historical Monthly Diffusion Tube Results

SITE ID	2017 Raw data	2017 Bias adjusted	2018 Raw data	2018 Bias adjusted	2019 Annual	2019 Bias adjusted	2020 Annual	2020 Bias adjusted	2021 Annual	2021 Bias adjusted
DT1	24	23.3	26.4	21.1	26.9	20.7	12.8	8.7	19.2	14.9
DT2	27	26.2	33.1	26.5	30.1	23.2	18.1	12.3	26.7	20.8
DT3	26.3	25.5	27.7	22.2	28.8	22.2	17.1	11.6	25.6	19.9
DT4	29.3	28.4	35.0	28.0	35.3	27.2	22.8	15.5	32.8	25.6
DT5	27.5	26.7	28.1	22.5	29.4	22.6	19.9	13.5	27.9	21.8
DT6	12.5	12.1	15.1	12.1	15.1	11.6	10.1	6.9	12.4	9.7
DT7	22.8	22.1	25.9	20.7	27	20.8	16.8	11.4	21.9	17.1
DT8	24.6	23.9	25.6	20.5	30.9	23.8	21.9	14.9	27.8	21.7
DT9	26	25.2	28.9	23.1	31.4	24.2	18.5	12.6	26.1	20.4
DT10	19.5	18.9	20.5	16.4	21.8	16.8	12.7	8.6	18.8	14.7
DT11	28.9	28.0	30.6	24.5	34.5	26.6	13.4	9.1	27.5	21.5
DT12	28	27.2	33.2	26.6	34.2	26.3	22.5	15.3	27	21.1
DT13	11	10.7	12.4	9.9	12.3	9.5	8.9	6.1	10.5	8.2
DT14	23.3	31.6	33.6	26.9	32.8	25.3	20.4	13.9	24.7	19.3

	2017 Raw	2017 Bias	2018 Raw	2018 Bias	2019	2010 Bias	2020	2020 Bias	2021	2021 Bias
SITE ID	2017 1.400	2017 Dias	2010 1.40	2010 Dias	2013	2019 Dias	2020	2020 Dias	2021	2021 Dids
	data	adjusted	data	adjusted	Annual Raw	adjusted	Annual Raw	adjusted	Annual Raw	adjusted
DT15	26.2	28.1	30.9	24.7	32	24.6	17.3	11.8	23.6	18.4
DT16	25.5	33.9	36.5	29.2	38.2	29.4	20.3	13.8	27.3	21.3
DT17	28.4	25.7	27.2	21.8	25.9	26.7	14.5	9.9	18	14
DT18	26.7	30.6	31.7	25.4	28.6	22	16.9	11.5	21.4	16.7
DT19	12.1	26.5	28.4	22.7	29.1	22.4	13.1	8.9	21.1	16.5
DT20	22.1	30.8	33.3	26.6	32.6	25.1	20.4	13.9	23	17.9
DT21	N/A	N/A	N/A	N/A	16.7	12.9	9.3	6.3	15.3	11.9
DT22	N/A	N/A	N/A	N/A	21.1	16.2	13.3	9.0	17.7	13.8
DT23	N/A	N/A	N/A	N/A	16.9	13.0	11.3	7.7	17.3	13.5

Appendix C: Supporting Technical Information / Air Quality Monitoring Data QA/QC

New or Changed Sources Identified Within West Lothian Council During 2021

West Lothian Council has not identified any new sources relating to air quality within the reporting year of 2021.

Additional Air Quality Works Undertaken by West Lothian Council During 2021

West Lothian Council has not completed any additional works within the reporting year of 2021.

QA/QC of Diffusion Tube Monitoring

- The supplier used for diffusion tubes within 2021 in West Lothian was SOCOTEC and the method of preparation that was used was by spiking Acetone: Triethanolamine (50:50) onto the grids prior to the tubes being assembled. The tubes were desorbed with distilled water and the extract analysed using a segmented flow auto analyser with ultraviolet detection.
- The samples have been analysed in accordance with SOCOTEC's standard operating procedure ANU/SOP/1015. This method meets the guidelines set out in DEFRA's 'Diffusion Tubes for Ambient NO2 Monitoring: Practical Guidance. As set out in the practical guidance, the results were initially calculated assuming an ambient temperature of 11°C, the reported values have been adjusted to 20°C to allow for direct comparison with EU limits. This analysis of diffusion tube samples to determine the amount of nitrogen dioxide present on the tube is within the scope of our UKAS schedule. Any further calculations and assessments requiring exposure details and conditions fall outside the scope of our accreditation. In the AIR PT inter comparison

LAQM Annual Progress Report 2022

scheme for comparing spiked Nitrogen Dioxide diffusion tubes, SOCOTEC currently holds the highest rank of a **Satisfactory** laboratory.

- The same diffusion tube supplier was used in West Lothian throughout 2021.
- West Lothian changed the diffusion tubes in accordance with the LAQM Nitrogen Dioxide Diffusion tube monitoring calendar throughout 2021 apart from when the tubes were changed one week late at the end of July due to annual leave. The tubes were then changed again three weeks later at the end of August.

Diffusion Tube Annualisation

All diffusion tube monitoring locations within West Lothian Council recorded data capture of 75% therefore it was not required to annualise any monitoring data. In addition, any sites with a data capture below 25% do not require annualisation.

Diffusion Tube Bias Adjustment Factors

West Lothian Council calculated both a national and local bias adjustment factor of 0.78 (national) and 0.73 (local) for the 2021 monitoring data, for comparison. A summary of bias adjustment factors used by West Lothian Council over the past five years is presented in

Table C.1.

The data provided in Table A.3 has the national bias adjustment factor applied. It was decided to select the national bias adjustment factor on this occasion, for a number of reasons;

- Diffusion tubes are changed monthly, had they been changed more frequently, this would have swayed us towards the local;
- There are no unusual situations within our co-location sites;
- The diffusion tube study was not less than 12 months;
- The Review and Assessment Helpdesk spreadsheet contains data from *more than* five other studies using the same laboratory and preparation;
- The data capture from the automatic analysers was poor for both Linlithgow and Broxburn

The version of the national spreadsheet used for the national factor was version 03/22 and 23 studies were applicable to this factor.

The automatic monitoring sites used to calculate a local bias factor were Linlithgow and Broxburn as there were no co-located diffusion tubes at Newton during 2021.

Year	Local or National	If National, Version of National Spreadsheet	Adjustment Factor
2021	Local	N/A	0.73
2021	National	03/22	0.78
2020	Local	N/A	0.68
2020	National	06/21	0.76
2019	Local	N/A	0.77
2018	Local	N/A	0.8
2017	Local	N/A	0.9

Table C.1 – Bias Adjustment Factor

NO2 Fall-off with Distance from the Road

No diffusion tube NO₂ monitoring locations within West Lothian Council required distance correction during 2021.

Figure 1 - Screenshot from AEA Spreadsheet - Bias Adjustment Factors for Diffusion Tubes - Linlithgow AQ Station

Cł	Checking Precision and Accuracy of Triplicate Tubes AEA Energy & Environment													
			Diff	usion Tu	bes Mea	surements	5				Automat	ic Method	Data Quali	ty Check
Period	Start Date dd/mm/yyyy	End Date dd/mm/yyyy	Tube 1 µgm ⁻³	Tube 2 µgm ⁻³	Tube 3 µgm ⁻³	Triplicate Mean	Standard Deviation	Coefficient of Variation (CV)	95% CI of mean		Period Mean	Data Capture (% DC)	Tubes Precision Check	Automatic Monitor Data
1	06/01/2021	03/02/2021	35.8	37.5	37.5	37	1.0	3	2.4		No data		Good	
2	03/02/2021	03/03/2021	25.5	24.0	25.4	25	0.8	3	2.1		No data		Good	
3	03/03/2021	31/03/2021	23.1	19.6	21.8	22	1.8	8	4.4		No data		Good	
4	31/03/2021	05/05/2021	22.1	22.7	23.0	23	0.5	2	1.1		No data		Good	
5	05/05/2021	02/06/2021	23.6	21.4	21.2	22	1.3	6	3.3		No data		Good	
6	02/06/2021	30/06/2021	18.4	19.1	19.6	19	0.6	3	1.5		No data		Good	
7	30/06/2021	04/08/2021	21.8	15.6	20.0	19	3.2	17	7.9		No data		Good	
8	04/08/2021	01/09/2021	23.1	19.7	21.0	21	1.7	8	4.3		No data		Good	
9	01/09/2021	29/09/2021	23.5	25.9	24.0	24	1.3	5	3.1		No data		Good	
10	29/09/2021	03/11/2021	25.6	25.0	25.7	25	0.4	1	0.9		21	63	Good	or Data Captur
11	03/11/2021	01/12/2021	28.1	28.0	28.9	28	0.5	2	1.2		22	100	Good	Good
12	01/12/2021	05/01/2021	32.0	30.8	29.1	31	1.5	5	3.6		26	100	Good	Good
13														
lt is	necessary to I	have results fo	or at least	two tube	s in order	to calculate	the precision	n of the measu	rements		Overa	ll survey>	Good precision	Poor Overall DC
Sit	e Name/ ID:		Linlithg	jow			Precision	12 out of	12 periods	have a C	V smaller th	an 20%	(Check average	CV & DC from
	Accuracy (with 95% confidence interval) without periods with CV larger than 20% Bias calculated using 2 periods of data Bias factor A 0.81 (0.53 - 1.76) Bias B 23% (-43% - 89%) Diffusion Tubes Mean: 29 µgm ³ Mean CV (Precision): 3						Accuracy WITH ALL I Bias calcul Diffusion <u>Mean C</u>	(with DATA lated using 2 Bias factor A Bias B Tubes Mean: / (Precision)	95% conf periods (0.81 23% 29 3	idence of data (0.53 - (-43% - µgm ⁻³	interval) 1.76) 89%)	50% 25% 90% -25%	Without DV-20%	With all data
	Mean CV (Precision); 3 Automatic Mean: 24 µgm ³ Data Capture for periods used; 100% Adjusted Tubes Mean: 24 (16 - 52) µgm ³							omatic Mean: apture for peri Tubes Mean:	24 iods_used: 24 (16	µgm ⁻³ 100% - 52)	µgm ⁻³	-50%	Jaume Ta	rga, for AEA

Figure 2 - Screenshot from AEA Spreadsheet - Bias Adjustment Factors for Diffusion Tubes - Broxburn AQ Station

		Diffusion Tubes Measurements										tic Method	Data Quali	ty Check
Period	Start Date dd/mm/yyyy	End Date dd/mm/yyyy	Tube 1 μgm ⁻³	Tube 2 μgm ⁻³	Tube 3 µgm ^{∙ 3}	Triplicate Mean	Standard Deviation	Coefficient of Variation (CV)	95% CI of mean	P	Period Mean	Data Capture (% DC)	Tubes Precision Check	Automatic Monitor Data
	06/01/2021	03/02/2021	53.4	34.5	45.9	45	9.5	21	23.6		33	100	Poor Precision	Good
	03/02/2021	03/03/2021	29.8	30.7	31.1	31	0.7	2	1.7		18	100	Good	Good
	03/03/2021	31/03/2021	23.7	27.5	25.6	26	1.9	7	4.7		19	97	Good	Good
6	31/03/2021	05/05/2021	33.4	34.7	33.2	34	0.8	2	2.0		31	100	Good	Good
	05/05/2021	02/06/2021	34.5	36.1	35.1	35	0.8	2	2.0		24	100	Good	Good
Le	02/06/2021	30/06/2021	26.0	26.3	25.9	26	0.2	1	0.5		14	100	Good	Good
니냐	30/06/2021	04/08/2021	35.1	28.5	25.2	30	5.0	17	12.5		15	100	Good	Good
	04/08/2021	01/09/2021	29.6	32.0	33.6	32	2.0	6	5.0		14	100	Good	Good
	01/09/2021	29/09/2021	33.0	35.0	24.5	31	5.6	18	13.8		17	21	Good	or Data Capture
	29/09/2021	03/11/2021	27.7	31.9	33.2	31	2.9	9	7.1		26	57	Good	or Data Capture
	03/11/2021	01/12/2021	33.9	37.6	37.9	36	2.2	6	5.5		26	100	Good	Good
	01/12/2021	05/01/2021	38.2	38.7	37.6	38	0.6	1	1.4		30	100	Good	Good
	3													
lt i	s necessary to have	e results for at le	east two tub	oes in orde	to calculat	e the precision	n of the measu	rements			Overal	ll survey>	Good precision	Poor Overall DC
S	ite Name/ ID:		Broxb	urn			Precision	11 out of 1	12 periods h	ave a CV s	maller th	nan 20%	(Check average	CV & DC from
1-		6	0.50/	C	·			(0.5%		(III)		Accuracy ca	lculations)
	Accuracy	(with	95% con	fidence	interval)		Accuracy	(with	95% cont	Idence in	terval)			
	without pe	riods with C	v larger	than 20%	/o		WITH ALL	DATA Istadusina 4	0	- 6 -1 - 4 -		50%		
	Blas calcula	ited using 9	periods	of data	0.000		Blas calcu	lated using 1	u periods	OF Gata	22	in 25%	1	1
	-	Dias lactor A	50%	(0.50 - 0	70%			Dias lactor A	0.00 ((0.57 - 0.8	() () ()	- Pe		
		Dias D	50.70	(2170 -	(976)			Dias D	40 %	(22% - 14	+ 70)	E 8 0%	Without CV>20%	With all data
	Diffusion I	ubes Mean:	32	µgm °			Diffusion	lubes Mean:	33	µgm °		9 -25%		
	Mean CV (Precision): 5							(Precision):				Diff		
	Automatic Mean: 21 μgm ⁻³							matic Mean:	22	µgm⁻°		-50%		
	Data Capture for periods used: 100%						Data Ca	apture for peri	ods used:	100%				
	Adjusted T	ubes Mean:	21 (1	8 - 26)	µgm ⁻³		Adjusted	Tubes Mean:	23 (19	-27) µg	gm ⁻³		Jaume Tar	ga, for AEA
1												V	ersion 04 - Fel	oruary 2011

Figure 3 - Screenshot of Diffusion Tube Bias Adjustment Factors Spreadsheet (DEFRA)

Diffusion Tube Bias Adjustment Factors 03/22 Issue of the Spreadsheet						
New (03/22) Fact						
Laboratory	Method	Year	No. of Studies	Factor		
Aberdeen Scientific Services	20% TEA in water	2021	7	0.75		
Edinburgh Scientific Services	50% TEA in acetone	2021	1	0.87		
Glasgow Scientific Services	20% TEA in water	2021	6	1.12		

LAQM Annual Progress Report 2022

Gradko	20% TEA in water	2021	32	0.84
Gradko	50% TEA in acetone	2021	14	0.83
Lambeth Scientific Services	50% TEA in acetone	2021	5	0.97
Milton Keynes Council	20% TEA in water	2021	1	0.74
SOCOTEC Didcot	20% TEA in water	2021	5	0.76
SOCOTEC Didcot	50% TEA in acetone	<mark>2021</mark>	<mark>23</mark>	<mark>0.78</mark>
SOCOTEC Glasgow	20% TEA in water	2021	1	0.78
SOCOTEC Glasgow	50% TEA in acetone	2021	1	0.80
Somerset County Council	20% TEA in water	2021	2	0.77
South Yorkshire Air Quality Samplers	50% TEA in acetone	2021	1	0.77
Staffordshire Scientific Services	20% TEA in water	2021	14	0.86
Tayside Scientific Services	20% TEA in water	2021	1	0.77
Number of Studies Included			114	

Table C.2 – Local Bias Correction Factor Summary

	Local Bias Adjustment Input 1	Local Bias Adjustment Input 2
Periods used to calculate	2	9
Bias Factor A	0.81	0.67
Bias Factor B	23%	50%
Diffusion Tube Mean	29	32
Mean CV (Precision)	3	5
Automatic Mean (µg/m³)	24	21
Data Capture	100	100
Adjusted Tube Mean	24	21

Table C.3 – Local Bias Correction Factor Calculation

Automatic Roadside Monitoring Site	Bias B%

Linlithgow	23
Broxburn	50
Mean Bias B	37
Factor + 1	1.37
Inverse	0.73

Note Calculation in accordance with LAQM TG16 Chapter 7

QA/QC of Automatic Monitoring

- The data management and LSO duties are carried out by Technical Officer Sarah Gillespie at West Lothian Council.
- Calibrations are automatically performed daily on the NO_X analysers at each of the three automatic monitoring stations. Audits are carried out every 6 months by Ricardo AEA Technology and servicing is also carried out every 6 months by an engineer from Enviro Technology.
- Ratification of the data is carried out by Ricardo AEA, and the monitoring data presented within the APR is ratified;
- Live and historic data is currently available on the Scottish Air quality web-site. This is available at <u>www.scottishairquality.scot</u>.

PM₁₀ and PM_{2.5} Monitoring Adjustment

The type of PM₁₀/PM_{2.5} monitors utilised within West Lothian Council do not require the application of a correction factor.

Automatic Monitoring Annualisation

Annualisation was required for two of our automatic monitoring sites in West Lothian located at Linlithgow and Newton, for PM₁₀, PM_{2.5} and NO₂ as the data capture was less than 75%. The results are shown in Table C.4

There were various issues with data capture at the continuous monitoring sites during 2021. The problems encountered at each site are summarised below;

Linlithgow Continuous Monitor issues;

PM₁₀/PM_{2.5} - The Issue with the FIDAS at Linlithgow was first noticed on 28th September 2020. It was discovered that the LED source had expired and would require to be replaced. In January 2021 the FIDAS was sent to Germany for repair and was then re-installed on 12th May 2021. During a routine Service on 12th October 2021, further issues were found with the FIDAS and it had to be sent away for investigative work. These investigations ended up taking some time and due to the lack of a 'hot spare' from the Councils maintenance contractor, a BAM PM₁₀ analyser was installed in November 2021 However, the but the data was then found to be flat lining. The maintenance contractor then replaced the BAM with a GRIMM 180 PM₁₀/PM_{2.5} analyser. However, as the Grimm 180 was not recognised by the SAQD Network, the Council were advised that the data was likely to be rejected. As such, the maintenance contractor re-installed the BAM PM₁₀ monitor back into the AQ Station at Linlithgow. It was discovered that the BAM measured in mg/m3 and therefore a factor had to be applied to convert the readings to ug/m3. The FIDAS was eventually re-installed after repair on 15th March 2022. The lack of a 'hot spare' from the maintenance contractor meant that this issue proved difficult to resolve quickly.

NO₂ - Issues were found with the NO_x analyser in September 2020 and the Council was advised by our maintenance contractor that the moly converter required replacing. This was replaced, however after a week, there continued to be problems with negative readings and the data was very erratic. It was found that further parts would have to be replaced on the NO_x analyser. As these spare parts had to be shipped from the US, the repair was delayed for some time. In March 2021 the NO_x analyser was finally repaired but unfortunately it was still showing negative and erratic data. The Councils maintenance contractor advised that the analyser would be sent to its workshop in April 2021 for investigative work. Eventually, the NO_x analyser was re-installed on 5th May 2021 but the data was still very erratic and due to the costs and lack of availability of parts, the decision was taken to purchase a new NO_x analyser. It took some time for the new NO_x analyser to be installed after it was purchased, but this finally took place on 7th September 2021.

Newton Continuous Monitor Issues;

PM₁₀/**PM**_{2.5} - There were issues with the data logger which resulted in data loss in 2021 and some date was deleted due to it being unreliable. During October 2021 water leaked into the AQ Station at Newton resulting in power loss and apparent corruption of the FIDAS analyser. It was sent for repair but the Council was advised that it would be January 2022

LAQM Annual Progress Report 2022

before the analyser could be looked at. The FIDAS has now been repaired but due to issues with water leaking into the station, it has not been re-installed. The entire enclosure at Newton is to be replaced along with the NO_X analyser and air-conditioning unit.

 NO_2 – There were ongoing problems from July 2020. On the 19th October 2020 it was removed and re-installed on 15th March 2021. Some data was deleted due to it being unreliable. There were further analyser problems from December 2021 – decided in January 2022 that NOX analyser would be replaced due to the repair costs.

Figure 4 - Automatic Monitoring Annualisation Summary (concentrations presented in µg/m3)

Site ID	Annualisation Factor Glasgow Townhead	Annualisation Factor Edinburgh Currie	Average Annualisation Factor	Raw Data Annual Mean	Annualised Annual Mean	Comments
Linlithgow CM1 (NO ₂)	0.82	0.88	0.85	23	19.6	
Linlithgow CM1 (PM ₁₀)	1.0	0.88	0.94	9	8.5	
Linlithgow CM1 (PM _{2.5})	0.95	0.85	0.90	6	5.4	
Newton CM3 (NO ₂)	0.99	0.97	0.98	16	15.7	
Newton CM3 (PM ₁₀₎	0.94	0.94	0.94	12	11.3	
Newton CM3 (PM _{2.5})	0.92	0.90	0.91	8	7.3	

As described in the Technical Guidance LAQM-TG-16, annualisation is carried out when data capture is less than 75%. In order to do this, two to four nearby, long-term, continuous monitoring sites, ideally those forming part of the national network require to be identified. The data capture for each of these sites should ideally be at least 85%. These sites should be background (Urban Background, Suburban or Rural) sites to avoid any

localised effects that may occur at Urban Centre, Roadside or Kerbside sites, and should, wherever possible lie within a radius of about 50 miles. If no background sites are available, and the site to be annualised is itself an Urban Centre, Roadside or Kerbside site, then it is permissible to annualise using roadside or kerbside sites rather than background sites, though this should be clearly stated in the annual report.

The next step is to obtain the annual means, **Am**, for the calendar year for these sites. Then work out the period means, **Pm**, for the period of interest (i.e. the period when data capture was poor at your own site), then calculate the ratio, **R**, of the annual mean to the period mean (**Am/Pm**) for each of the sites. Finally, calculate the average of these ratios, **Ra**. This is then the annualisation factor.

The next stage is to multiply the measured period mean concentration **M** by this annualisation factor **Ra** to give the estimate of the annualisation for 2021.

- The period mean for Linlithgow (CM1) for PM₁₀ was May to October, for PM_{2.5} was May to October, plus December 2021 and for NO₂ was October to December 2021.
- The period mean for Newton (CM3) for PM₁₀ and PM_{2.5} was January to July 2021. The period mean for NO₂ for Newton was April to June and October to December 2021.
- The two sites used to calculate annualisation for Linlithgow and Newton were Glasgow Townhead (Urban Background) and Edinburgh Currie (Suburban site) as there was not enough data available at the 3 West Lothian continuous monitoring sites. Both of the sites used were within a 50 mile radius of the Linlithgow and Newton sites.

NO₂ Fall-off with Distance from the Road

No automatic NO₂ monitoring locations within West Lothian Council required distance correction during 2021.

Figure 6 – Pollutant trend graphs over the past 5 years – PM_{2.5} trend graph – 2017 to 2021

Figure 10 – Newton Air Quality Management Area

Figure 11 – Diffusion Tube Locations Map

Figure 12 – Map of Continuous Monitoring Locations in West Lothian

Glossary of Terms

Abbreviation	Description			
AQAP	Air Quality Action Plan - A detailed description of measures, outcomes, achievement dates and implementation methods, showing how the LA intends to achieve air quality limit values'			
AQMA	Air Quality Management Area – An area where air pollutant concentrations exceed / are likely to exceed the relevant air quality objectives. AQMAs are declared for specific pollutants and objectives			
APR	Air quality Annual Progress Report			
AURN	Automatic Urban and Rural Network (UK air quality monitoring network)			
CAFS	Cleaner Air For Scotland Strategy			
DEFRA	Department for Environment, Food and Rural Affairs			
DMRB	Design Manual for Roads and Bridges – Air quality screening tool produced by Highways England			
FDMS	Filter Dynamics Measurement System			
LAQM	Local Air Quality Management			
NO ₂	Nitrogen Dioxide			
NOx	Nitrogen Oxides			
PM10	Airborne particulate matter with an aerodynamic diameter of 10µm (micrometres or microns) or less			
PM _{2.5}	Airborne particulate matter with an aerodynamic diameter of 2.5µm or less			
QA/QC	Quality Assurance and Quality Control			
SO ₂	Sulphur Dioxide			

LAQM Annual Progress Report 2022

References

- 1. Broxburn AQAP webpage: https://www.westlothian.gov.uk/media/17039/2017-Broxburn-Air-Quality-Action-Plan-Approved/pdf/2017_Broxburn_Air_Quality_Action_Plan_final_for_consultation.pdf
- 2. West Lothian Council Air Pollution Webpage: http://www.westlothian.gov.uk/article/2216/Air-Pollution
- 3. DEFRA AQMA map webpage: <u>https://uk-air.defra.gov.uk/aqma/maps</u>
- 4. Cleaner Air For Scotland (CAFS) Webpage: http://www.gov.scot/Publications/2015/11/5671/17
- 5. West Lothian Council Carbon Management Plan: <u>https://www.westlothian.gov.uk/media/10480/West-Lothian-Council-Carbon-Management-Plan-2015-20/pdf/Carbon_Management_Plan_2015-2020.pdf</u>
- 6. West Lothian Council Active Travel Plan: <u>https://www.westlothian.gov.uk/media/12492/West-Lothian-Active-Travel-Plan-2016-21-</u> <u>Making-Active-Connections/pdf/West_Lothian_Active_Travel_Plan_2016-212.pdf</u>
- 7. West Lothian Council Renewable Energy Strategy: <u>https://www.westlothian.gov.uk/media/2612/Renewable-Energy-Strategy-in-2012/pdf/renewable-energy-strat.pdf</u>
- 8. Air Quality in Scotland webpage: http://www.scottishairquality.co.uk/
- 9. Air Quality Scotland Diffusion tube map webpage: http://www.scottishairquality.scot/latest/diffusion-sites

LAQM Annual Progress Report 2022

- 10. West Lothian Council Air Quality Supplementary Planning Guidance Webpage: <u>https://www.westlothian.gov.uk/media/33857/Air-Quality-PG/pdf/Air_Quality_-</u> <u>Planning_Guidance.pdf</u>
- 11. Bureau Veritas Diffusion Tube Data Processing Tool

https://laqm.defra.gov.uk/wpcontent/uploads/2021/10/Diffusion_Tube_Data_Processing_Tool_v1.2.xlsb

12. AEA Diffusion Tube users Spreadsheet re: precision and Accuracy

https://laqm.defra.gov.uk/documents/AEA_DifTPAB_v04.xls

13. Diffusion Tube National Bias Adjustment Factors Spreadsheet

https://laqm.defra.gov.uk/wpcontent/uploads/2021/10/Database_Diffusion_Tube_Bias_Factors_v09_21-FINALv2.xlsx

14. West Lothian Local Development Plan

https://www.westlothian.gov.uk/media/38765/West-Lothian-Local-Development-Plan-Adopted-2018/pdf/West_Lothian_Local_Development_Plan_-Adopted_final_Web_Version_Amended_-_2020-01-08.pdf?m=637140907284930000

15. West Lothian Council Climate Change Strategy

https://www.westlothian.gov.uk/media/52423/Climate-Change-Strategy-2021-2028/pdf/WLC_Climate_Change_Strategy_2021-28_FINAL.pdf?m=637816379267070000

16. West Lothian Council Local Outcomes Improvement Plan

https://www.westlothian.gov.uk/media/17003/West-Lothian-Local-Outcomes-Improvement-Plan-2013-2023/pdf/West_Lothian_Local_Outcomes_Improvement_Plan_2013-2023.pdf?m=636402870095500000

17. DEFRA's Diffusion tubes for ambient NO2 monitoring: Practical Guidance

https://laqm.defra.gov.uk/documents/0802141004_NO2_WG_PracticalGuidance_Issu e1a.pdf